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A real-time automated way of quantifying metabolites from in
vivo NMR spectra using an artificial neural network (ANN) anal-
ysis is presented. The spectral training and test sets for ANN
containing peaks at the chemical shift ranges resembling long echo
time proton NMR spectra from human brain were simulated. The
performance of the ANN constructed was compared with an
established lineshape fitting (LF) analysis using both simulated
and experimental spectral data as inputs. The correspondence
between the ANN and LF analyses showed correlation coefficients
of order of 0.915–0.997 for spectra with large variations in both
signal-to-noise and peak areas. Water suppressed 1H NMR spectra
from 24 healthy subjects were collected and choline-containing
compounds (Cho), total creatine (Cr), and N-acetyl aspartate
(NAA) were quantified with both methods. The ANN quantified
these spectra with an accuracy similar to LF analysis (correlation
coefficients of 0.915–0.951). These results show that LF and ANN
are equally good quantifiers; however, the ANN analyses are more
easily automated than LF analyses. © 1998 Academic Press
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INTRODUCTION

Recent technical improvements in localizedin vivo 1H NMR
spectroscopy have made it a valuable tool for studying neuro-
chemistry noninvasively as well as for acting as a potential
modality in clinical neuroradiology. If clinical NMR spectros-
copy is expected to develop into a widely accepted method for
medical diagnosis, data analysis must be reproducible and
should occur close to real time when a patient is still in the
magnet.

Several procedures have been applied in biomedical NMR
spectroscopy to quantify areas of metabolite resonances from
frequency domain spectra. With methods such as the lineshape
fitting analysis (1–4) and the linear combination of model
spectra (5), noisy 1H NMR spectra or overlapping peaks in

spectra can be assessed. However, the reliable use of the
lineshape fitting analysis methods needs spectroscopic exper-
tise, so that a fully automated analyzer by these methods is
rather difficult to develop.

It has recently been shown that ANN analysis offers some
important advantages for biomedical NMR data analysis (6–
11). These include instant and fully automated modes of action.
However, utilization of the ANN analysis is limited, since there
is a need for a training data set, which properly describes the
different aspects of a particular application. As far as quanti-
fication is concerned, this would require peak areas and con-
sequent concentrations of the NMR spectroscopy detectable
metabolites to be collected at a largely varying range.

In this study we used a computer simulated spectroscopic
data set for training a neural network. This trained ANN was
utilized to quantify metabolite peak areas ofin vivo long echo
time 1H NMR spectra of a human brain. Our results indicate
that the ANN-based method can be regarded as an automated
means of quantifying1H NMR spectra also in cases where
acceptable experimental data sets are not available.

RESULTS

The training process with the simulated1H NMR data led to
complete learning of the neural network. The correspondence
between the ANN and the actual output values for the metab-
olite signals showed correlation coefficients of the order of
0.99–1.00.

The performance of the trained ANN was tested using 100
randomly simulated spectra. These spectra, such as the training
set spectra, represented a wide range of different signal-to-
noise ratios (3.0–50.3) and half linewidths of the peaks (2.2–
6.0 Hz). The correlation coefficients between the ANN and the
actual output values were over 0.98 for all metabolite signals
(Table 1). The correlation coefficients between the LF and the
actual output values were also excellent, which means that the
correspondence between the ANN and LF analyses was also
very high (Table 1).1 To whom correspondence should be addressed.
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The usefulness of the trained ANN was further evaluated by
applying it to Cho, Cr, and NAA resonances in a set of 24
experimentalin vivo 1H NMR spectra, which were also quan-
tified by the LF analysis. The correlation coefficients between
these two methods for Cho, Cr, and NAA were 0.947, 0.915,
and 0.951, respectively (Table 1 and Fig. 1).

DISCUSSION

The lineshape fitting method in the frequency domain is
commonly used to quantify NMR spectra (1–4). Our results
show that the correspondence between the ANN and LF values
was very high, which indicates that the LF and ANN methods
are equally good in spectral quantification. Slightly smaller
correlation coefficients in the case of the experimental spectra
compared to the simulated test spectra may result from the fact
that the peaks of experimental spectra do not have ideal Lorent-
zian lineshapes, which causes some errors to both LF and ANN
results. Using several kinds of lineshapes in training of the
ANN seems to make it possible to devise a model-independent
method for analyzing1H NMR spectra.

The training of an ANN is the most critical phase in design-
ing an ANN analyzer, because ANN needs a wide training set
of good quality to be able to work well. The quality of the
spectra should be good, accurate concentrations of metabolites
of each spectrum should be known in the training set, and there
should be enough variation in the concentration for every
metabolite. In the case of biomedicalin vivo applications it is
difficult to find examples good enough for the training set. This
problem is often the most significant one in the use of ANN to
quantify NMR spectroscopic data. An alternative method, as
shown here, would be to use simulated data in training an ANN
with the ability to quantify experimental proton spectra. It is
also possible in the training process to use both experimental
and simulated data together to obtain a more versatile ANN
analyzer.

There are several methods for absolute quantification of
metabolite concentrations: (i) internal standard, (ii) external
standard, and (iii) external standard displacement methods. In
the present work we did not use endogenous water (11, 12) as

a concentration reference, in which case we could not deter-
mine absolute metabolite concentrations. However, because
the percentual areas of metabolite peaks (Cho, Cr, and NAA)
were accurately quantified by ANN, one would expect to
derive absolute concentrations from these figures with ade-
quate referencing.

The ANN quantification results agree well with those ob-
tained from an independent LF analysis. This shows that com-
puter simulated NMR spectroscopic data can be used to over-
come the practical problem of obtaining an acceptable
experimental training data set. Our study indicates that it is
possible to construct a fully automated real-time quantifying
analyzer forin vivo 1H NMR spectra using ANN with simu-
lated training data.

EXPERIMENTAL

In Vivo 1H NMR Spectroscopy Measurements

The single-voxel double-spin echo PRESS sequence [sweep-
width of 1 kHz, 1024 complex data points, echo time (TE) of
270 ms, repetition time (TR) of 1500 ms, the volume of interest
(VOI) of 8 ml, and 256 scans] was used forin vivo 1H NMR
spectroscopy data acquisitions from the parietal cortex of 24
healthy subjects with a Siemens Magneton SP63 1.5 T scanner
with a quadrature head coil. Water suppression was accom-
plished by three Gaussian-shaped CHESS pulses with band-
widths of 60 Hz. Eight scans were acquired without water
suppression for compensation of eddy currents (13).

Simulation of the Spectra

Long echo-timein vivo NMR spectra (TE5 270 ms) were
simulated using Lorentzian lineshapes (see Eq. [1]) and vary-
ing frequencies of peaks (PL), intensities, and half linewidths
of the three detectable metabolites (Cho, Cr, and NAA). The
half linewidths were the same for signals at the resonance
frequencies of Cho, Cr, and NAA. Simulated noise similar to
the noise in experimental data was also added to mimic signal-
to-noise ratios in the genuinein vivo spectra (see Eq. [1]). This
resulted in a complete training set with highly variable metab-
olite concentrations and signal-to-noise ratios. The following
equation was used to calculate the frequency domain spectrum
to form an input (Tinput) for the ANN:

Tinput~v! 5 O
i51

3 ai
2I i

ai
2 1 4~v 2 vi!

2
1 N 5 L~v! 1 N. [1]

Here ai is the half linewidth,Ii the signal intensity,vi the
resonance frequency,L(v) the Lorentzian lineshape, andN the
simulated noise. The peak areas for the resonances, i.e., the
actual outputs (Toutput), were calculated using the equation

TABLE 1
The Results of the Test and Experimental Data of Artificial
Neural Network (ANN) and Lineshape Fitting (LF) Analysis

Data set Cho
ra/rmsb

Cr
ra/rmsb

NAA
ra/rmsb

Test set (ANN and real) 0.991/0.019 0.984/0.020 0.991/0.020
Test set (LF and real) 0.992/0.017 0.982/0.022 0.991/0.020
Test set (ANN and LF) 0.996/0.020 0.994/0.013 0.997/0.011
Experimental set (ANN and LF) 0.947/0.020 0.915/0.010 0.951/0.021

a r is the correlation coefficient.
b rms is the root mean square error.
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The performance of the trained ANN was further evaluated
with an additionally simulated test set. Variations of the pa-
rameters in training and test sets used in the computer simu-
lations are shown in Table 2.

Data Processing and Lineshape Fitting Analysis

In order to remove the residual water signal from the exper-
imental spectra, the Hankel Lanczos singular value decompo-
sition (HLSVD) (14, 15) method was applied. This was not
necessary in the case of simulated data since they were simu-
lated without the residual water signal. Then, the data were
analyzed in the frequency domain by means of the FITPLAC

program (2, 16) concerning two different kinds of prior knowl-
edge: (a) The linewidths of all three fitted peaks were allowed
to be estimated without any constraints, and then (b) the
linewidths were constrained to be the same. The second ap-
proach has provided more accurate and precise results espe-
cially for spectra with very low signal-to-noise ratios. There-
fore, only these results were used for an assessment of the
performance and accuracy of the trained neural network.

ANN Analysis

In this study the simulated spectra were used to train the
network to calculate the spectral points (input) from the me-
tabolite signal percentual areas of peaks (output) corresponding
to the human brain tissue metabolites Cho, Cr, and NAA. Both
simulated and experimental spectra were processed in the same
way in the frequency domain before the ANN analysis. First,
the average of the noise of the spectrum was set to 0. Then the
intensity of each frequency point of each spectrum was divided
by the sum intensity of the area studied (17.58–243.16 Hz).
The topology of the feed-forward fully connected three-layer
Perceptron was an input layer of 21 neurons, two hidden layers
of 22 neurons, and an output layer of 3 neurons. This network
topology was evaluated using a trial-and-error process. Logis-
tic transfer functions were used and all inputs and outputs were
scaled between 0 and 1. The training process of the ANN was
performed using a TurboProp algorithm, which iteratively ad-
justed the connection weights of the neural network to give a
desired output. The training process was accomplished using a
90 MHz Pentium PC applying a commercial NeuroShell 2
program (17).

FIG. 1. Correlations in the experimental data set between (a) the choline-
containing compounds, (b) total creatine, and (c) theN-acetyl aspartate con-
centrations estimated by the lineshape fitting and the artificial neural network
analysis. The values on the axis are relative areas of metabolite peaks.
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TABLE 2
Training, Test, and Experimental Set Parameter Variations

Data set aa nb PL
c S/NCho

d S/NCr S/NNAA

Training set 2.2–6.0 1000 60.98 1.3–45.4 0.5–55.3 4.4–54.8
Test set 2.2–6.0 100 60.98 3.0–40.7 3.6–32.5 6.0–50.3
Experimental set 2.4–5.8 24 '60.98 5.4–17.1 3.9–13.6 11.8–27.5

a a is the half linewidth (in Hz).
b n is the number of spectra.
c PL is the random displacement of location of the peaks (in Hz).
d S/N is the signal-to-noise ratio.
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